Optymalizacja systemoéw

Wyktad 16. Podsumowanie



Model w badaniach systemowych

Efekt:

o » nowa wiedza
Wyniki: » nowe obiekty
» procedury zarzadzania
» urzadzenia sterujace
> aparatura pomiarowo-
-kontrolna

> wnioski i hipotezy
» metody projektowania odniesienie wynikéw
> metody zarzadzania > do obiektu
> algorytmy sterowania
> metody diagnostyczne

zjawisko,
proces, obiekt

eksperyment wyniki
badacz
Cel:
» poznanie
> projektowanie v v
» zarzadzanie - model poréwnanie
> sterowanie

> diagnostyka

1tp.
doskonalenie

(poprawa) modelu [*




Sformutowanie zadania wspomagania

Obrazy:

http:/ /ziemianarozdrozu.pl/encyklopedia/67/hydroenerget
http:/ /kresy24.pl/showNews/news_id/5871/

http:/ /windy-future.info/2009/10/13 /large-wind-turbine/

Flektrownia wodna  Elektrownia atomowa  Elektrownia wiatrowa

(1) x? e

¢;,C,,C; — koszt jednostkowy
wytworzenia energii
)

¥, x® x® - obcigzenie elektrowni -
zmienne decyzyjne
Cel: minimalizacja kosztéow wytworzenia: F(x"",x

@ xN) = x +c,x? + C3X

Ograniczenia: - spelnienie zapotrzebowania na energie:  x" + x» +x® > g

- mozliwosci poszczegdlnych elektrowni: 0 < x™ < a,, n=123


http://ziemianarozdrozu.pl/encyklopedia/67/hydroenergetyka
http://kresy24.pl/showNews/news_id/5871/
http://windy-future.info/2009/10/13/large-wind-turbine/

Sformutowanie zadania wspomagania

decyzji

Zmienne decyzyjne: X =

Funkcja celu: y = F'(x)

Zbioér rozwiazan dopuszczalnych (zwykle okreSlony przez wskazanie ograniczen):

xeY

Decyzja optymalna: x — F(x") = mgl F(x), minf(x)= —max(— F (x))

Decyzja zadowalajaca:

%’—)F(?c’)ﬁF(x*)+a:7/Axe@c



Typowe zadania decyzyjne

Zadanie decyzyjne bez ograniczer: 7] = R°

p(x)=0

e

»

);(1)

Zadanie decyzyjne z ograniczeniami
nierodwnosciowymi:

T ={x e R 1y, (0) < 0,y () <O,...,p7,, (x) <O

Zadanie decyzyjne z ograniczeniami

rownosciowymi: ;
‘é D ={xe R :0,(x)=0,0,(x)=0,...,0,(x) =0, L < S}

(1)

w,(x)<0
J Wy (x)<0

x)<0

v

M

=
o



Analityczne metody optymalizacji

s> Zadanie optymalizacji bez ograniczen

s> Zadanie optymalizacji z ograniczeniami rOwnosciowymi
- metoda wspotczynnikow Lagrange’a

so Zadanie optymalizacji z ograniczeniami
nierownosciowymi - metoda Kuhna-Tuckera



Zadanie optymalizacji bez ograniczeni

Zadanie optymalizagcji: x o F (x *) = min F ()C)
xe =R5

Zatozenie: FF'(x) jest funkcja ciagla i rézniczkowalna.
Warunkiem koniecznym aby X " byto minimum lokalnym jest:
V)CFV ('x ) e = OS

Jezeli £'(X) jest funkcja pseudo - wypukla, powyzsze rownanie jest warunkiem
koniecznym i wystarczajacym aby X bylo minimum globalnym

Jezeli H (x) jest dodatnio p6t okreslona V x € R° to rozwigzanie
powyzszego rownania jest minimum globalnym

Jezeli H (x) jest dodatnio okreslona V x € R° powyzsze réwnanie ma jedno
rozwiazanie X ijest ono minimum globalnym



Zadanie optymalizacji bez ograniczeni

Réwnanie V/ i F(x)

— ()S moze mieé wiele rozwigzan
x*

F (x) 4

v

*

X

Warunki optymalnosci drugiego rzedu:

Jezeli H(x") jest dodatnio p6t okreslona w punkcie x°
to x” jest minimum lokalnym

Jezeli H ( x*) jest ujemnie p6t okreSlona w punkcie x*
to X" jest maksimum lokalnym



Zadanie optymalizacji z ograniczeniami réwno$ciowymi

Metoda mnoznikéw Lagrange’ a

Zadanie optymalizacji: x~ — F(x") = Ipi£ F(x)

D ={xeR: 9(x)=0,0,(x)=0,...,0,(x)=0, L<S |

@C:{xe?{S: p(x)=0,, LSS}

= 1)

(%) | 0

0
o(x) = %,(x) 0,=|.|¢L— zer

K% (x)_ 0]




Zadanie optymalizacji z ograniczeniami réwnos$ciowymi

Metoda mnoznikéw Lagrange” a

s> Metoda wspotczynnikow Lagrange’ a

Funkcja Lagrange’a:

L
L(x,)=F(x)+ Y. 4p(x) = F)+ X 0(X) [p0]  [4”
=1 o, (x) /12 - wektor

gdzie: ¢(x)= ,A=| | wspolczynnikoéw
: - | Lgrange’ a
Warunki konieczne optymalnoSci: [ 9.(X)_ A,
V. L(x,A) . . =0,
V,L(x,2)| . . =0, < rank G(x)=rank [G(x) | -V _F(x)]

Gx)=[V.p(x) | V.o,(x) i = i V. g, (x)]
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Zadanie optymalizacji z ograniczeniami réwno$ciowymi

Metoda mnoznikéw Lagrange’ a

Powyzszy uklad réwnan moze mie¢ wiele rozwigzan
Warunki optymalnosci drugiego rzedu:

Oznaczmy: H, (x) = VxxL(x, /1)

Jezeli H,(x") jest dodatnio okreslona w punkcie x"
to x” jest minimum lokalnym

Jezeli H , (x ") jest ujemnie okreslona w punkcie
to X" jest maksimum lokalnym x”

Jezeli funkcja I (x) jest wypukla, a ograniczenia sa liniowe czyli maja
posta¢ @, (x)=p, x—ca, =0, [=12,...,L to powyzszy uktad rownan
ma jedno rozwiazanie i jest ono rozwigzaniem optymalnym

11



Zadanie optymalizacji z ograniczeniami réwnos$ciowymi

Metoda mnoznikéw Lagrange” a

s> Metoda Lagrange” a - Przyklad 1

F(x)= (x(”)2 + (x(z))z

p(x)=x" +x® —4=0

L(x, /1) = (x(l))z + (x(z))z + ﬂ(x(l) +x¥ - 4)

12



Zadanie optymalizacji z ograniczeniami réwnos$ciowymi

Metoda mnoznikéw Lagrange” a

s> Metoda wspotczynnikéw Lagrange’a - Przyklad 2
rozwiazanie nieregularne

F(x)= (x(l))2 + (x(z) )2

@(x)

o(x) = (x(z))2 — (x(l) — 1)3 =0

)

N

13



Zadanie optymalizacji z ograniczeniami réwnos$ciowymi

Metoda mnoznikéw Lagrange” a

Jezeli F(x) jest funkcja ciggtly, r6zniczkowalng i wypukla oraz ograniczenia
@,(x),0,(x),...,0,(x) sa liniowe to uktad rownan:

V.L(x,2) . . =0
V,L(x, ). . =0,

ma jedno rozwigzania i jest ono rozwigzaniem zadania optymalizacji z
ograniczeniami rOwnosSciowymi.

Powyzszy uktad réwnan w tym przypadku jest warunkiem koniecznym i
wystarczajacym
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Zadanie optymalizacji z ograniczeniami réwno$ciowymi

Metoda mnoznikéw Lagrange’ a

so Uogolniona metoda wspoélczynnikoéw Lagrange” a

L
V. L(x,A,4) = A4V F(x)+ > AV ¢,(x) =0
[=1

L L
1° 2,20 V_F(x)+ Z%vx@ (x)=05 = V. F(x)+ > A4V ¢,(x) =0
=1 7% /=1

L
A =1 V. F(x)+ Z AV ¢,(x)=0, -ztego warunku otrzymamy
’ [=1 rozwigzania regularne
20 ZO =0 Z AV ¢,(x) =0 -ztego warunku otrzymamy rozwiazania
=1 nieregularne

Podobnie jak poprzednio otrzymane rozwigzania wymagaja zbadania
warunkoéw drugiego rzedu czyli zbadania okreslonosci macierzy:

H,(x,A,4)=V> L(x,A,,).

15



Zadanie optymalizacji z ograniczeniami nieréwnosciowymi

Metoda Kuhna - Tucker’a

Zadanie optymalizagcji:

x°— F(x") :mglF(x)

@C:{xe@S:l//l(x)SO,wz(x)SO,...,l//M(x)SO} y(x) | 0
w(x) = W, (x) 0, = O i
9 ={xe@?5 :w(x)SOM} gdzie: ; :
Y (x)_ ) _‘O"
=0 @y w3 (x) <0 “ P

> L > 16
MO NO



Zadanie optymalizacji z ograniczeniami nier6wnosciowymi

Metoda Kuhna - Tucker’a

Funkcja Lagrange’ a:

Lix, ) =F(x)+p'w(x) & L(x,u)=F (X)+Zumwm(X) th
u - wektor
gdzie: y=| " | wspélczynnikow
Warunki konieczne optymalnosci: ! | Lgrange’ a
| Hy
r —
1V, L(x, 1) o T 0
v, L(x, ﬂ)‘x*’ﬂ* <0,
,u* >0,, < gdy rozwiazanie jest regularne
| B
o = sz B= :8:2

a < ﬂ - Vs:l,...,Sas < ﬂs

g s _



Zadanie optymalizacji z ograniczeniami nier6wnos$ciowymi

Metoda Kuhna - Tucker’a

Przykiad 1

Fx)=(x" —2f +(x® -2f
v, (x)=x"-1<0
w,(x)=x% -1<0




Zadanie optymalizacji z ograniczeniami nier6wnoS$ciowymi

Metoda Kuhna - Tucker’'a

Przyklad 2 - rozwigzanie nieregularne

F(x)= (x(l) — 2)2 + (x(z) )2
v, (x)=x% + (x(l) — 1)3 <0 x4
w,(x)=—x* <0

L(x,A)= (x(l) _ 2)2 N (x(z) )2 i (x(z) n ( 0 1)3 )_ ,sz(z)




Zadanie optymalizacji z ograniczeniami nieréwnos$ciowymi

Metoda Kuhna - Tucker’'a Warunki regularnosci rozwigzania

1. Karlina: ograniczenia y/, (x), W, (x), Wy (x) - liniowe

2. Slatera: ograniczenia V¥, (x), v, (x), s Wy (x) - wypukle oraz zbiér rozwigzan
dopuszczalnych ma niepuste wnetrze

3.Fiacco - Mac Cormica: w punkcie optymalnym gradienty wszystkich ograniczen
aktywnych sa liniowo niezalezne, czyli:
Vmel (x*3 Vi, Cc*] sa liniowo niezalezne

4. Zangwila: (x")= D(x")

5. Kuhna - Tucker’a: dla kazdego kierunku d € @(x") istnieje krzywa regularna
rozpoczynajaca sie w punkcie x* istyczna do tego kierunku

X=X

Vde7(x') 3e(9) gefo1]  [al®) 1 Rozwigzanie
° e(O) — x" e, (9) nieregularne
e(3)=| 2,
o ¢(9)eD, VIelo,1] ;
9
° de(g)‘Q:o =7-d _85( )_

d9



Zadanie optymalizacji z ograniczeniami

nierownosciowymi Metoda Kuhna - Tucker’a

Warunki konieczna i wystarczajace:

Jezeli funkcje F (x), v, (x), v, (x), e Wy (x) sa ciggle i rézniczkowalne oraz
funkcja F (x) jest funkcja pseudo - wypukla, a ograniczenia ¥, (x), v, (x), vy Wiy (x)
sa funkcjami quasi - wypuklymi to wklad réwnan i nieréwnosci:

V _L(x,u) T 0
w'V L(x, 1)
V L(x, ,u)‘x*’ﬂ* <0,

/U* 20,

X U

ma jedno rozwigzanie i jest ono rozwigzaniem zadania optymalizacji z
ograniczeniami nierOwnosciowymi



Szczegblny przypadek

x' > F(x)= mglF(x)

9 :{xe@i‘9 :xZOS,w(x)SOM}
L(x, 1) =F(x)+ u"y(x)
VxL(x,,u)(x*’ﬂ* >0, VﬂL(x,,u)(x*,ﬂ* <0,

xTVxL(x, ,u)( = 0 IuTVﬂL(x, ,u)(x*’ﬂ* =0

x" 20 W =0,

22



Szczegblny przypadek

x°— F(x") =mglF(x)
7 ={xe R 1p(x)=0,,p(x) <0, |

L(x, A, p1)= Fx)+ A o(x)+ p"yr(x)

\% L(x,/l,,u)(x*,ﬂ = 0

V(e A ) =0,
WV LA ) =0

VL0 A ) <O,

23



Zadanie optymalizacji z ograniczeniami

nier6wnoSciowymi - Punkt siodtowy

Punkt siodtowy (x*, ,u*)

L(x, )

/(xiﬂ) \ !

L(x*,,u*)ﬁ L(x,,u*) Vx e D(x)c R°
L(x*,,u)SL(x*,,u*) Yu>0,,
L(x*,y*)z min max L(x, 1)

xePD(x) u=0,,

24



Zadanie optymalizacji z ograniczeniami

nier6wnoSciowymi - Punkt siodtowy

Punkt (x*, ,u*) jest punktem siodtowym (xe D(x), u=20,) <

1. x" —minimalizuje L(x, z)
2. y,[x')<0 m=12,.,M
3. ,u*l//m(x*):O m=12,....M

Jezeli (x*, y*) jest punktem siodtowym funkcji Lagrange’a L(x,u) to jest
rozwigzaniem zadania optymalizacji:

x° = F(x7) nglF(x)

D ={xe Ry, (x)<0,,(x)<0,...,p,, (x) <O

25



Numeryczne metody optymalizacji

50 x* = F(x*) = min F (x)
XED,
@)
Problemy analityczne:

\ 1. Nieliniowa zlozona funkcja celu F
@ / 1 ograniczen ¢ orazi.
/ 2. Nier6zniczkowalnosé funkcji F, ¢
/ oraz .
/ 3. Nie jest znana postac analityczna
funkgcji F, ¢ oraz i, moznajedynie
,zmierzy¢” wartos¢ funkgeji

4. Duzy wymiar wektora zmiennych

decyzyjnych.

D



Metody numeryczne

x> F(x")= @%F(x),

Konstruujemy cigg przyblizerh na podstawie wartosci funkcji /' (x) w danym
punkcie x

VARV ARVEARVARN

F(xy) > F(x) > F(x,) > ce > F(xy)= F(x")

27



Numeryczne metody optymalizacji

@

Algorytm
Xn+1 = lp(xn)! X0

* Wybor kierunku
poszukiwan.

* Optymalizacjaw
kierunku.

« Warunki zatrzymania
procedury.

X0y X1y eer Xppy i) XNy = X*
F(xg) > F(x1) > ..>F(x,) > ...>F(xy) = F(x%)



Wyb6r kierunku poszukiwan

@

@D

e Kierunki bazoweiich

modyfikacje - metody
bez gradientowe.

* Kierunki oparte na

gradiencie funkcji -
metody gradientowe.

e Inne



Optymalizacja w kierunku

£ @

X - punkt poczatkowy
x1 - punkt koficowy

d - kierunek

7 - dlugosc kroku w
kierunku

D

T* = F(xg+1*d) = minF(xy + td)
T
Xo,d - ustalone F(xy + td) £ f(7)
f (t) - funkcja jednej zmiennej (dlugosci kroku 7)
7" = f(7) = min f(7)

optymalizacja w kierunku = optymalizacja funkcji jednej zmiennej



Warunki zatrzymania procedury

IF(xn+1) _F(xn)l <
"xn+1 - xn"

IXn11 — xnll <& [F(xpiq) — F(xn)| < 6;

Uwaga!

Flx)
@

Fl -4l

Fex, )L
FO eyl

@D



Metody optymalizacji w kierunku

s> Metody optymalizacji w kierunku
o Podzial rownomierny
o Podzial na polowe
o Zloty podziat
o Aproksymacji kwadratowej
o Metoda pierwszej pochodnej
o Metoda znaku pochodne;
o Metoda Newtona

o Metoda Bolzano

32



Metody zawezania odcinka

Zatozenie: t* € [a, b]

i(7)




Podzial rOwnomierny

f(z)

N = [b_Ta] - liczba wyliczen
wartosci funkcji

I

|
——&—0—0—.—.—&—.—6—‘%
a T, T, - T, b T

Top = a
Tp = Tog + NéE

T~ 1 - f(7) = min {f(7,)}

1<n<N



Zawezanie odcinka

f(a)? f(Br)
f(r) f(r)

flan) < f(Bn) f(an) > f(Br)

An+1 "= A Apn+1 = Ap
bpt1 = ﬁn bpt1 = by



Metoda podzialu na potowe

f(t)

Dane: ag, by, €, 0
£b,) Krok O: n=20

Krok 1: ey = (ay+by) — 8

1

Bn =§(an+bn) +0
Krok 2: Jesli f(ay) < f(Bn) to

Ant1 = An, bny1 = Bn,

W przeciwnym razie

Aps1 = An, bpyq = by.
bnT  Krok3:  Je$li|bpyq — aneq| = eto
n:=n++ 1, idz do kroku 1,
W przeciwnym razie

= —(ans1 + bns1) (STOP)




f(z)

Metoda y podziatu

an, = b, + y(an - bn)
fn=ay+ y(bn - an)

N =?

Dane:

Krok O:
Krok 1:

Krok 2:

Krok 3:

o, bOJ &Y

n=0

an = b, +vy(a, —by)

Bn =a, +y(b, —ay)
Jesli f(ay) < f(Bn) to
Apt1 = Ay bp1 = P,
W przeciwnym razie
A1 = Apybpyq = Dy.
Jesli |b, 1 —ayi1| = €to
n:=n++ 1, idz do kroku 1,
W przeciwnym razie

£ = (ans1 = bpsr) (STOP)



Metoda zlotego podziatu

tv) Dane: ag, by, €7 = Vo1

Krok O: n=20 i
ay = by +y(ag — by)
£ Bo = aog +v(by — ap)
Krok 1:  Jesli |b, — a,| < & to
# =~ (ay + b,)(STOP)
/ w przeciwnym razie — krok 2

\?_ffg)/ i Krok 2: Jesli f(ay) < f(B,) to

flan) A1 = An, bpyr = P,
ﬂn ay ,8: b, T Brn+1 = an,

aﬂﬂ c:nﬂ ﬁn+1 b,m Tn4q Bn + y(an T bn)
N n:=n+ 1, idz do kroku 1

W przeciwnym razie

|
I
I
|
|
I
|
I
|
|
I
I
I
I
|
L

an+1 an+1 ﬁn+1 n+1

‘+y —1=0
’ \}lg _ Un+1 = An, bn+1 = bn:
y=——~0618 An+1 = Pn,

N =2 Prn+1 = an +yv(by, — ay)

n:=n+ 1, idz do kroku 1



Vietoda aproksymacji

f(z) q(t)

a<b<c
f(a) = f(b)
f(b) < f(c)

q(t) — aproksymacja kwadratowa
° - minimum funkcji g(7)

f@@=b)x=c) fh)r-a)=c [)E=a)T=Dh)
(@a—b)(a—c) (b—a)(b—c) (c—a)(b—c)

. 1f(@®* = c®) + f(b)(c* — a®) + f(©)(a® = b?)
C T2 f@b -0+ fb)(c—a) + f()(a—Db)

q(1) =




Vietoda aproksymacji

f(z)

|
|
I
| {
|
l |
| |
' |
| |
' |
[ |
' |
I |
| |
I i
a (.

|
[}
|
|
+ +
*
n bn Tn

n T an o bn ot

f(bn) = f(7n) f(bn) < f(1n) fn) =2 f(mn)  f(bn) 2 f(13)
An+1 = by Apy1 = An An+1 = An An+1 = Tn
bni1 = Tn bpi1 = by bp+1 = Tn bpi1 = by
Cn+1 = Cn Cnt1 = Tp Cn+1 = Dy Cn+1 = Cn

lCn+1 — Ans1l < € T=Tp4



Metoda pierwszej pochodne;

f(z)

Tn+y1 = Tn — Ynf’(tn) Yn > 0,79
limy, =y

n—Co
(o]

Z‘}In:(}o
n=0

np. |Tyey — 74| <& (STOP)

4 + 4
TU Th-1 Tn Tn+1 T

Ty = To — Yof (7o)
T, =Ty —vaf (1) = 10 —vof (o) —v1f'(11)
Tn+y1 = Tn — an’(rn) = =Tp — VOf’(TO) — Vlf’(rl) — Vn?{”(rn)

Tt = ol = |Zykf (Tl < Z nelf @)l < max |f @)1 ) v
k=0

o<k<n
_T0|<Z}’k—°°



Vietoda znaku pierwszej

Tht1 = Tn — l9‘.*1-5‘1'971[}”("fn)]
Yof ' (Tn) = Yalf ()| * sign f'(z,) = 9, Sign[f,(rn)]! gdzie ¥, = yu|f (o)l
9, >0

lim 9,, = 0, bo 11m|f (t,)| =0, 11m Yn =Y

n—Cco

Zﬁn=oo lim 9,, = 11m Yalf (t,)| =0

n—oo



Metoda Bolzano

sign a,, #* sign by,

f(z) fr) f(z)

! i
! | |
1

a, %(ﬂ:”") b, 1 an %(ajw,,) b, T
1
: . ; 1
signa, = sign(f'(z(a, + b)) /1 ; — o e
n 1 2 n n ff (E (an + bn)) — 0 Slgn bn Slgn(f (2 (an + bn)))
An+1 = ) (an + by) an+11 = ln
bpt1 = by = 2 (ay + bn) bpi1 = 2 (an + by)

(rzadko)



Metoda drugiej pochodnej

() @

To
. — 7 f'(Tn)
s " f'"(tn)

Tne1 — Tnl < € (STOP)

T T T

1
f(@)=f(ry) + (t—10)f ' (T0) + E(T —19)*f" (7o) + 03 (|7 — 701)
\ J

Y
q(7)

q' (D) = f'(1) + (&* = 1) f" (o) = 0
~ (W)
)

T8 =1,



Bezgradientowe metody optymalizacji

s> Bezgradientowe metody optymalizacji
o Hooka-Jeevesa (z krokiem dyskretnym
i optymalnym)
o Rosenbrocka (z krokiem dyskretnym
i optymalnym)
o Powella
o Neldera Meada

45



Metoda Hooka-Jeveesa - z krokiem

@

Me)

7- krok x )

a > 1 wspotczynnik kroku roboczego
p € (0,1) wspotczynnika korekcji kroku

T:=10



Metoda Hooka-Jeveesa - z krokiem




Metoda Rozenbrocka - z krokiem
skretnym

7- krok
a > 1 — wspotczynnik
korekcji kroku
B € (—1,0) - wspotczynnika
korekcji kroku
Ts = Tg
Ts = Tsf




Metoda Rozenbrocka - z krokiem




d,,d,,...,ds - sprzezone wedtug macierzy A, symetrycznej i dodatnio okreslone;

0 i+#]
d{ Ad; =

1 i=j

(2)
X F(x) =x"TAx +b" + ¢




Metoda Powella

F(x) =xTAx+ bT + ¢
@

@D

X1 =Xo+x*d
T° - minw kierunku d z x,
x1=xp+1"d
T - minw kierunku d z x,

dTAd' =0
d,d’'- sprzezone wedtug A



Metoda Powella

@




X1 Xy ...Xsp1 - Simplex w przestrzeni s-wymiarowe;

@
xy = F(xy) = max F(x
H (xx) 1<5<S+1 ()
x; o F = ]
L2 FQ) = min F(x)
S+1

_ 1 Z
x—S X

s=1,s#H

@D

Generowanie simplexu poczgtkowego

X, C a=$(\f5+1+\/§—1)
c
b=m(vs+ —1)

di=[ ] Xi = Xo + dj, X541 = X



@D



Metoda Neldera-Meada

Odbicie

x*=x+a(x —xy)

a — wspotczynnik odbicia
Jeslia >0

F(x*) < F(xp)

Ekspansja
X =x+yx*—x) y>1
Y — wspotczynnik ekspansii

Kontrakcja
Jesli F(x*) > F(xy)
X =x+ p(xy —x)

Jesli F(x*) >  max F(xs)

S*¥H
x***=x+p(x*—x) Pe(0,1)
B — wspotczynnik kontrakcji



Gradientowe metody optymalizacji

soGradientowe metody optymalizacji
o Gradientu prostego
o Najszybszego spadku
o Newtona
o Gradientu sprzezonego
o Zmiennej metryki
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Metody gradientowe

Xn+1 = Xn + Tndp
dp = G(VxF(xy))
T~ krok procedury




Metoda gradientu prostego

Xpi1 = Xp + Tpdy,
(0]
dn = _VxF(xn) ;T > O; lim Tn = T,Z’l'n = 00
n—co

@

xXn+1 — xnll = llTndnll <€




Metoda najszybszego spadku

Xns1 = Xp + Tpdy
d, = -V, F(x,), T,,- minimumw kierunku d,,
x2)

”xn+1 - xn” <¢




Metoda Newtona

1
F(x) =\F(x0) + (x — x0) " F (o) + 5 (x — x0)TH(x0) (x — x¢) }‘l‘ 03 (llx — xol)

Y
Q (%)

Me)

V,Q(x) = V,F(xo) + H(xo)(x* — x9) = Os
x* = xo— H ™ (x0) Ve F(x0)

Xn+1 = Xn — H_l(xn)VxF(xn)




Metoda Fletchera-Reevesa

Krok 0:z; =xo, s=1, di = -V, F(z)
Krok 1: z;, 1 = z; + T4d;
T = minimum w Kierunku d
Jesli ||t dg]| < e (STOP)

W przeciwnym razie idz do kroku 2

. — |VxF(Zs41)l
KI’Ok 2 dS+1 = _VxF(Zs+1) <+ ||VxF(Z:)1|| dS

s:=s5+1, idzdokroku 1

dy,d,, ..., ds - Kierunki sprzezone dla formy kwadratowej



Metoda zmiennej metryki

Krok O: Z1 = Xy, d1 = _DlvxF(Zl), D1 = I, s=1

Krok 1: z;,1 = z; + 1,d, gdzie T, - minimum w Kierunku d
Jesli ||t;dg|| < € (STOP)
w przeciwnym razie idz do kroku 2.

Krok 2: dgyq = —Dsy1 Vi F(Z541)

T T
DsDs Dsqsqs D :
D,y =D+ — dzie
sH1= U5 T Te T Tqlngg, ' O

ps = Tsdg, qs = |7xF(Zs+1) - VxF(Zs)
s:=s+1 idz do kroku 1.

Dsyq = H 1 (x541)



Metody optymalizacji z ograniczeniami

so Metody optymalizacji z ograniczeniami
o Transformacji zmiennych
o Funkgcji kary
» Kary zewnetrznej (kary)
» Kary wewnetrzne (bariery)
o Metoda compleks
o Poszukiwania losowe
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Metoda transformacji zmiennych

* min F
X xeD. (%)

p:R° - D,
_ x=p(2)
F(2) = F(p(2))

ZER°> > x €D,

* .
m
Z mip P2




Przyklad

F(x) =x
Dx={xER1 x =1}
x*—>mi{1x
x=

Flx) =x x=2z>+1=7p(2)
ZER-> x €[1,)

F(z) = z*+1
z* - minF(2)
ZER

z* - min(z?+1)

Z€eR
| (z24+1) =2z=0
|
i z'=0

X D, x x'=pz) = () +1=1



Metody funkgji kary

K, (x)

Fi. (x) | D, X
4}(&/

1, >0 lim r, = oo
k—oco




Przyklady funkcji kary zewnetrznej

D, ={x €R®, p;(x) =0, [=1,2,..,L, Y, (x) <0, m=1,2,..,M}

01(x) > Ki;(0) = (9,(0))", 1=1,2,.., L

U (X) = Ko (x) = (max{0, U (XIN2.m =1.2,.... M

L
K0 = ) n(p)” + Z pm MaX(0, @ (1))
=1

l



Przyklad

2 2
Fi) = () + (x) = () 4 (x@)? (D 4 12 _ )
D, = {x € R%,x® + x@ _ 2 = 0} F () = (xM)" + (@) + 1, (x® + x@ - 2)
Fr(x) =0

22D + 27, (x® + x@ —2) = 0
x@

2x2 4 21, (x(l) + (2 — 2) —0

x(l) = x(z)

+21 (x W + xP - 2) =0

~ .

& 2 (1) D _ (@) _
. ¥ * 2rk +1

27,
xM =x@ = lim -, X = [1]
T— Zrk +1 1

7




Kary wewnetrzne (bariery)

|
K, (x) | Dy | x
| i
I |
| |
'~ %

Fp (x) r D, | X
Mrk |
| |
|
D, X



Kara wewnetrzna (metoda Carrola)

= 1X ER>, x) <0, m=1,2,..,
D, ={ RS m(x) <0 1,2 M}

Kw(x) — ZnMI:l'PZgC) , m=1,2,...M




Przyklad

Fx)=x; Dy={x€eRLx>1}={x€eR,1—x <0}

F(x) | K. (x) = -1 _ 1
| v 1-x x-—1
l F,(x)=x+m !
K,, (x) | D, X x—1
ik rroN Tk
_ﬂi D, > x F(x)—1+(x_1)2—0
Fie ()] : X =1x1,
iv X = 1=y €Dy
:: xx =1+, €D,

limx, =1

n—co



@

D . \
| N
) Lo B WFGO
Hf‘",:d“ / ebm N I%F@]
vxf:f»mx —wy () — 8 < 0
N
—7 P (X)

D



Metoda rzutowania - Rozena

@ @

Pm(x)

Pasy; x@®

@

Ym (%)

e



X1 X5 ...Xg - kompleks w przestrzeni s-wymiarowej K > S + 1

@
xy = Fxp) = max F(xg)
K
2)
X = — X
S S
s=1,s+H

x* =1+ a)x-xy

@D

Dy: 1. <x®) <ugs
Ly < xp(X) <u,,m

) ) wun )

1,2,..,S
1,2,...M

X =l + 1 |ug — l|, 7 — liczba losowa € [0,1],k =1,2,...,K
Jesli xnie nalezy do D, to przesun punkt w kierunku centroidu punktow
zaakceptowanych



Poszukiwania losowe




Zadanie programowania liniowego

x* - F(x*) = }Iclel%n F(x)

D, ={x €RS,0;(x)=0,1=1,2, ..., L, (x) <0,m=1,2, .., M}

S
F(.X') = CTx — Z Csx(s)
s=1
S

¢(x) =ajx—b; = Z xS —b=0 1=1,2,..,L

s=1

S
Ym(x) = a;l';zx— by, <0 = Zamsx(s) —b, <0 m=12,...M
s=1

x>0 s=1,2...8



Interpretacja graficzna

@

e N X *
, - \mX = b, <
/ L 1. Rozwiazanie lezy w
wierzchotku
/ I)x
\“h 5

~e
s
o




Interpretacja graficzna

@

2. Rozwigzanie lezy na odcinku



Interpretacja graficzna

3. Rozwigzanie nieograniczone




Posta¢ kanoniczna

F(x) =c'x

A DX = {x ERS,Ax_b = OL,xZ Os}

lub

B: Dx:{XERS,Ax—bSOL,xZOS}

C1 by [ (D] a1 ais
C:|:§ ) b: E ) X = E ) ASXL:|:E §:|

Cs by, x(5) arq ars




= Lo ho=

Metoda simplex

Wyznaczenie rozwigzania poczatkowego
Kryterium zbieznosci - zatrzymanie procedury
Przechodzenie z jednej bazy do drugiej

Postepowanie przy rozwigzaniach zdegenerowanych



Algorytm simplex

1. Wyznaczamy poczatkowa baze dopuszczalna
2. Badamy czy ¢ — cgB™1A > 0. Jezeli tak to xp - rozwiazanie

problem x = [xp 0]

3. Wstawiamy do bazy k - takie, ze ¢;, — z = 1r£15i£15(cs — Z)
4. Badamy, czy hj, < 0, jesli tak - funkcja nieograniczona

5. Wyrzucamy z bazy [ - takie, ze

o

6. Ip:=1Ip\{l}U{k}
Ir={je{12..,5} x() jest elementem bazy }
7. Jezeli wskaznik optymalnosci zmiennej nie bazowejjest rowny 0 to istnieje

kolejne rozwigzanie (rozwigzania alternatywne)



Algorytm simplex

C1 Ck CS
gmienn | cp hy hy hy hg hso | hg, =0
bazowe hsk
Xj1 Gj1 hio hi1 ik hys
/E\
Xji i | ho hi1 (hlk) hys
®
XjL, GL hyo hiq oy hys
(1 — 741 Ck — Zg Cs — Zg
— h h! — hls h! h hlkhls
Z = CsNgk Is * h ’ is is h
lk lk
S€lp
s=1,2,..,§ i=01,..,5




Programowanie catkowitoliczbowe

so Programowanie catkowitoliczbowe
Zmienne decyzyjne: X € @jz /Na {x(s) e¢,s=12,..., S}

EN

Inne rbwnowazne
P

X€ D ={x,,%,,..., X, | - typoszereg

,4_1_1; X € @Tz {x(s) € {O, 1}, s=1,2,..., S}— programowanie

// // —

zero - jedynkowe (Boolowskie)

v

¥
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Programowanie catkowitoliczbowe

Krok 0: DU - {Dxc - Dol}, n = 0, ]0 =1
Krok1: Wyznaczy¢ taki zbiér D* € D,

F(D") = 1r)ré%)n F(D)

Krok2: Badamy czy D* jest zbiorem jednoelementowym ({x*} = D*)
lubx* ~ F(D*) tj. F(D*) = F(x*) x* € D* (oszacowaniejest
catkowitoliczbowe) to x* jest rozwigzaniem optymalnym STOP

Krok3: D* =D, dzielimyna M zbioréw roziacznych

M

DinkDonk - Dynk  Dnx = U Dmnk
m=1

KrOk 4: D* = an

Dpy1 =Dp U {Dlnk:DanJ e DMnk}\an

Dn+1,j=Dnj ] = 1,2,...,k—1

Dp1j=Dmnk j=k—1+mm=12,..M

Dn+1,j=Dni j=k+M+ii=k+1,... ), ni1=Jn+M—-1



M
Dy, = U D01
m=1

Do Dr-101 Dro1 Dr+101 - Do
n=1J,=M
Di:  xj;~F(D1y) - X1k-1~F(D1-1) X1ks1~F(D1g+1) = X1u~F(D1m)
M min - xfkva(le)
Dyy = U D1k
m:_.l . L]
n=2/,=2M-1 D11k Dmixk  Dmik
Dz:
x31~F(D31)" X2k—1~F(D2r_1) X5 kem~F(Dajernr) -+ X3 p-1~F(Dam-1)

X2 ~F(Dyg) - x;,k—1+m~F(D2,! I x;,k—1+M~F(D2,k—1+M) |




Podejmowanie decyzji

w warunkach niepewnoéci

soN1epewnoSC opisana zmienng
losowa
so(Gra z natura

soPodejscie growe
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Niepewnos¢ opisana zmienng

%, = E|%(0)]=

:{ e R; E[(D,(x 60)] 0,/=1,. L,lg[wm(x,g))]SO,m=1,...,M}

X —)F(x*):minF(x)

xeD,



Podejmowanie decyzji w warunkach

a Z nature
a;, - minimalna korzysc dla / —tego Al. - maksymalna korzysc¢ dla i — tego
wiersza wiersza

H(y)=a,y+40-y) yelo]
Reguta Hurwicza. Analizujgc kolejne wiersze macierzy znajdujemy minimalng
I maksymalng korzysc, tj..: wartosci a, oraz Al. , a takze wartosc¢ funkcji H;(y) dla
ustalonego y. Wybieramy te decyzje, dla ktoérej wartos¢ funkcji H; (y) jest najwieksza.
W przypadku niejednoznacznosci rekomendujemy wszystkie decyzje, dla ktorych
powyzszy warunek jest spetniony.

Rodzaj Warunki pogodowe a A H(y
uprawy susze normalne deszcze min L y=10.5
12 10

1 8 10 12 8
2 10 11 7 7 11 9
3 9 13 8 8 13 [ max
4 11 10 6 6 11 8.5
5 10 10 9 Y 9 10 9.5



Pode]mowame decyz]l w warunkach
pewnoscli — gra z nature

y30,75




Gry w podejmowaniu decyzji

Gra dwuosobowa o sumie zerowej

Macierz wyptat dla gracza A: Macierz wyptat dla gracza B:
aqz —aq11 —Aq7 oo —Aqm —1pm
Az Az1 Qzz ... Qm ... Qzm Az —ayq1 —Qyp ... —Qym -.- —QAopy
An An1 Anz2 -« Apm ... QApu An —Apn1 —An2 ... —Apym ... —Auum
Ay ayi1 Aanz2 ... Aym ... Qnm Ay —ay1 —ayz ... —Qym  --- —Anm
Gracz A maksymalizuje zyski Gracz B minimalizuje straty

Zwyczajowo podaje sie macierz wyptat dla gracza A



Gry w podejmowaniu decyzji

s> Typowe podejscie do rozwigzywania gier
o Wyznaczenie punktu siodtowego
o Usuniecie strategii zdominowanych
o Wyznaczenie strategii mieszanej dla:
* N=21M=2
* N>21M>2



Gry w podejmowaniu decyzji

Gra dwuosobowa o sumie zerowej

Punkt siodtowy: max min a.. =min max a..

1<n<N 1<m<M 1<n<N 1<m<M
a1 aq2 A1m aA1m
Az Arq1 QAyp ... Qo ... Qoy
An an1 an2 ce - ce Anm «~— MmMax min anm
1<n<N 1<mM
AN an1 an- aAnm anm

 min max a

1<n<N 1<m<pm ™"



Gry w podejmowaniu decyzji

Strategia zdominowana | dominujgca
Gracz A dysponuje strategiami: 4;, 4,, ..., Ay

Strategia A, jest zdominowana przez strategie A ,
(dominujgca) Vm=1,2,... M a,h <a,.
jezel

Gracz B dysponuje strategiami: B;, B,, ..., By,
Strategia B , jest zdominowana przez strategie B ,

(dominujacg) !
jezeli Yn=1,2,...N a,>a,.

nm



Gry w podejmowaniu decyzji

P1

7 >

Roéwnania dla gracza A
pay, + pya, =V, /B
piay, + pyay =V, B,
pt+p,=1

p, =1-p,

\P1a11 "'(1_171 )a21 =V, /B,

P, + (1 — D )azz =V,/ B,



Gry w podejmowaniu decyzji

Réwnania dla gracza B
q,a,, tq,a, =Vy /4
4,0y, +q,a, =V, | A,

q,+q, =1

q, =1—g¢q,
\%an "'(1_%)‘112 =V, /4

Q1>
4,45, "'(1_% )azz =Vy I 4,

1

aiq



Gry w podejmowaniu decyzji

Gra dwuosobowa o sumie zerowej

Strategie mieszane N>2, M>2:

a1 @ | lam | lam_
B, B, .. B, .. By

P1 1 11 Q12 e A e M
P2 Ay, ax; ap eee Qom ... Qom
pn An anl anz PP anm P anM
pN AN an1 ayn» aAnm anm

W tym przypadku rozwigzanie gry sprowadza sie do
rozwigzania zadania programowania liniowego



Gry w podejmowaniu decyzji

Zadanie dla gracza A
pa,, +p.a, +--+pya, =2V, /B m=1,2,....M

pitp,++py=1 V4
p,20 n=12,...,N

Prg P2y i By 1B m=12,..,M

Vi v, ™ Vi !
p1_|_p2_|_“_|_pN_1
Ve V. Ve V.




Gry w podejmowaniu decyzji

Zadanie dla gracza A

a, x, +a, x,+--+a, xy=21/B m=1,2,....M

X1 i Xy e Xy =7 |~ Zatem nalezy minimalizowa¢ wyrazenie
|4
A

X 20 n= 19 29 e N\GraczA maksymalizuje zysk
Ostatecznie zadanie dla gracza A
min (x1 + X, —|—---+xN): vV,
X1 5X) 5ee s Xy
Przy ograniczeniach:
a, x,+a, x,+--+a, xy=21 m=1,2,.... M

x =20 n=12,...,N

min

p,=x,V



Gry w podejmowaniu decyzji

Zadanie dla gracza B

qga,+q.a,++q,a, <Vy, /A n=12,...,N

ql_l_qz_l_...—'—qM:l /VB

q,20 m=12,... M

ian1+2an2+m+q—ManMﬁl/An n=1,2,...,N

Vs Vs Vs

9@ 9 . 9u _ 1

Ve Vi Ve Vi

In>0 m=1,2,....M

Vi Niech: ym:q—m m=12,....M
VB



Gry w podejmowaniu decyzji

Zadanie dla gracza B

a y,+a,y,++a,y,<1/A n=12,....N

1
v,t+y,+:-+y,, =—| Zatem nalezy maksymalizowaC wyrazenie
V

vy, =20 m=1,2,...,gﬁ\

Ostatecznie zadanie dla gracza B

max (yl + ), +.“+yM):VBmax
V15V2ses VM

Przy ograniczeniach:

Gracz B minimalizuje straty

a.y,+a ,y,++a,v, <l n=12,...,N

vy, 20 m=1,2,....M
qm :yn VBmaxam:Lz,...,M



Zakl6cony pomiar wielkoSci fizyczne;

so Sformutowanie problemu l z,
0 Vi QN

—  h6.z) —— w.(,) —

Opis systemu pomiarowego: V= h(@ s Z )

gdzie: ve? }h -znana funkcja, wzajemnie jednoznaczna wzgledem z
h:0x% > z=h'(0.v)
Przyktady funkcji i: v = h(@, Z) =0+z
v=h(0,2)=6-z

Y - przestrzen pomiarow( dim6f =dimz =L )
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Zakl6cony pomiar wielkoSci fizyczne;

so Stormutowanie problemu l Z,
0 v, QN

- h(@,z) | ‘PN(VN) "

Zaklécenia pomiarowe:
z, - wartos¢ zmiennej losowej z z przestrzeni X

f. (Z) - funkcja gestosci rozkladu prawdopodobienstwa zmiennej z

0 - obserwowany wektor wielkoéci, wartoé¢ zmiennej losowej 6, 0 e ® < R”
Jo (9) - funkcja gestosci rozkladu prawdopodobieristwa zmiennej &

Wyniki pomiaréw: V', = [v1 V, e vN]
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Zakl6cony pomiar wielkoSci fizyczne;

Poszukujemy algorytmu estymacgiji:

‘9N =Y, (VN)

s» Mozliwe rozwigzania:
o Metoda najmniejszych kwadratow
o Metoda maksymalnej wiarogodnosci
o Metody Bayes’a



Metoda najmniejszych kwadratéw

Zalozenia:

V= h(@, Z) =0+z - zaklécenia addytywne

E [g] =0 - wartos$¢ oczekiwana zakl6cern wynosi zero
Z

Var[g] < o - skoficzona wariancja zakl6ceri

Z

Empiryczna wariancja zaktécen:

N
Var, (V,.0) =2 (v, 0]

n=1
Algorytm estymacji otrzymujemy minimalizujac empiryczna wariancje zaklocen:

Algorytm estymacgji:

QN:LPN(VN) - Vaer(VNa‘gN):rglei(glVa”zN(VN»H) QN:%ivn
n=1
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Metody Bayes’a z obserwacja

0 y

Zalozenia: h(@, Z)

y= h(@) g) - system pomiarowy opisany jest dowolna funkcja, wzajemnie jednoznaczna
wzgledem z
g9 - obserwowany wektor wielkoéci, wartoé¢ zmiennej losowej 6, e ® c R"
Postacie funkgji gestosci rozkladéw prawdopodobienistwa f, (z) oraz f, (6’) sg znane .

Dana jest funkcja strat L(@, 0 ) , gdzie 4 jest wartoscia estymaty obserwowanej wielkosci.

R(®)= £ [tle.a =70, )= [[lo. %0, )07, ) a0ar,
0.Vy 7.0
gdzie: f ((9, VN) taczny rozklad prawdopodobienistwa

f(9> VN): f'(@‘VN )f”(VN)

gdzie f'jest warunkows, a f" brzegowa funkcja gestosci rozktadu prawdopodobieristwa

Ryzyko:
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Metody Bayes’a

Problem: ‘PN —> R(\PN ) = IIl_iIl R(@)

Y

)= Il L. ) s e )do 1w, )av,

A0.v,)=ElL.0)r, ] IL V) (e,)do

gdzie: r -ryzyko warunkowe

Problem sprowadza si¢ do nastepujacego zadania :

Oy :\PN(VN) — r(eNﬂVN):minr(g’VN)

=0



Metoda maksymalnej wiarogodnosci

Zalozenia: l Zn
0 %

—_— h(@,z) —»

V= h(ga Z) - system pomiarowy opisany jest dowolna
funkcja h, wzajemnie jednoznaczna
wzgledem z

Posta¢ funkgji gestosci rozktadu prawdopodobieristwa zaktoceri f, (Z ) jest znana

Funkcja gestosci rozkladu prawdopodobiefistwa obserwowanej zmiennej losowej v

£.00)= (1 0.) _

-1
oh_'(0,v)
gdzie: J, -Jacobian, macierz przeksztalcenia odwrotnego.

gdzie: J n =

b

ov

Funkcja wiarogodnosci ma postac:

LN<VN,9>=1sz<vn,e)=ﬁah:(e,vn))\fh

n=1

b
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Zadanie polioptymalzacji

X - wektor zmiennych decyzyjnych

F(x),F,(x), ..., F,,(x) -kilka réznych funkcji celu - ocena wielokryterialna
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Polioptymalizacja

Syntetyczny wskaznik jakosci
F(x) = H(E (x), F2 (x), ey FK (x)) H(.) — funkcja monotoniczna ze
K

wzgledu na kazdg sktadowg
np.: F(x)=) a,F,(x)
k=1

gdzie:

K F =o,F(x)+a,F,(x) + o F(x)
Yo, =1 a,>0, k=12,..,K|
k=1 '

F(x)=]]Fx

xT > F(xh)= mglF(x)
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Polioptymalizacja

Optymalizujemy wybrany wskaznik,
Pozostate wskazniki spelnione sag w spos6b zadowalajacy.
Niech F,(x) - wybrany wskaznik

Fx)<p, k=23,....K
Wskazniki spetnione w sposob zadowalajgcy

T =T nxeR Fx)<pB,k=2,..,K}
i3
J28

X' = F(x") = min F(x)
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Polioptymalizacja

Uszeregowane wskazniki jakosci — priorytety wsrod wskaznikow
FxX)=F,(x)>...> F.(x) xeY
Krok 1. @d = @C

x; = F(x]) = min £ (x)
x1

krok2. U, =T, ﬂ{xe@is :E(X)Sﬂ(xf)+71}

x, = F,(x,) =min F,(x)

xeY,



Polioptymalizacja

krokk. g = Yy 1m{xe@5° ( )<F(x1*<—1)+7/1<—1}

x =x, > F.(xz)=min F(x)

A XE@

F3(x Fl(x) Fz(x)

), @m{xe@ F() F(x1)+7/1}



Zbi6r punktéw kompromisowych

X, X, €D, <:>Vje{1, 2,...,K}E|ie{1, 2,...,K}
F}(xl)>Fj(x2):E(xl)<E(x2)




Programowanie dynamiczne

Proces dynamiczny: y,., =P(y,,X,) n -takt
x, — decyzja w n - tym takcie
¥, - stan procesu w n - tym takcie

Xy
15 Saving Tips by

Yo N %) Yy Vs

* * *
Zadanie decyzyjne: znalez¢ ciag: X, Xj 5.5 Xy,

http://www.all-freeware.com/

dla ktorych wskaznik Q(XO 0 S ¢ N) przyjmuje wartos¢ minimalng
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Optymalizacja wieloetapowa

%k %k % % %k % .
xl,xz,...,xs %F(xlp.XQ’,...,x‘s): mln F(xI,X2,.-.,xS)
X| X 5. XgEY]
D= (x5 %5, Xg)

{[xl X, '--xS]Te@S: 0, (x;, Xy, 1, x)=0,1=1,2,..., L,
wm(xl,xz,o--,xs)ﬁ 0,m=1, 2,...,M}

Powyzsze zadanie mozna rozwigzac krok po kroku optymalizujgc po
jednej zmiennej i uzalezniajgc od pozostatych.

Przyjmijmy oznaczenia:

F=F, @o=¢!l=,2,...L, v =v .m=1,2,.. M 9 =9



Optymalizacja wieloetapowa

Krok 1.

% % o
Xg =GS(x1,...,xS_1)—>FS(x1 ,xz,...,xs)z min FS(xl,xz,...,xS)

xg€Yg

Wartos$¢ funkcji celu w punkcie optymalnym:

A
%k
FS_l(x1 ,xz,...,xS_l):FS(x1 ,xz,...,xs)zFS(x1 ,xz,...,GS(xl,...,xS_l))

Ograniczenia w punkcie optymalnym:
A

LS
@S_l(xl,...,xS_l)z@S(xl,...,xS_l,xS =GS(x1,...,xS_1))=

N

( r S-1 .
[xl X "'xS—l] ER:

¢zs(x19x29”'» Gs(xla"-nxS—l)):¢IS—1(X19xz»"'axs_l):OaZ:L 2,..., L,

\l//mS(xl,xz, e, GS(xl,...,xS_l))zl//mS_l(xl,xz, o--,xS_l)S O,om=12,.... M

'

J



Optymalizacja wieloetapowa

Krok S-1.

X, :Gz(xl)_)FZ(xl ,x;)zxn;lin Fz(xlaxz)

2€%,

Wartos¢ funkcji celu w punkcie optymalnym:

A

E(x1 ):Fz(xl x;)z Fz(xl 9G2(x1))

Ograniczenia w punkcie optymalnym:

A

9, (xl ): s (’xl , X, =G, (xl )) =

N

(x, €eR:
¢12(x19 Gl(xl)): ¢11(x1): 0,/=1,2,..., L,

kl/ij(xlﬂ (;5—1(351)):%”;"1(361)S 0,m=12,...,M|




Optymalizacja wieloetapowa

Krok S.

x; = F,(x} )= min F,(x,)
x1 €Y,

Teraz mozemy powrdci¢ do zaleznosci ,,G” wyznaczonych w poprzednich krokach

*
X1

x, =G, (xl* )

* * * *
xS_l _GS_I(XI ,X2 ...,xS 1)

* * * *
X :GS(xl,x ,...,xS_l)



Programowanie dynamiczne

X X X -1
PN G,
Vo M V) YN Yy
N-1 A
Q(Xo Kiseees Xn_15 V15 Vaseees J’N):ZAn+1(x Y +1)=F(y0,x0,xl,...,xN 1)

n=0



Programowanie dynamiczne

N1
Q(xoaxl ----- xN—19y19y29"'9yN):ZAnH(xn’ynH)
n=0

Krok 1. x;k\/—l —> minAN(xN_l,yN)= minAN(xN_pP(yN_laxN—l ))

XN-1 ///////7 XN-1

Wiemy ze:  y, = P(yN_pr—l)

Xy =Gy (y N-1 ) —> mind, (xN—l , P (y N-1>XN-1 ))

XN-1
A

Vo (y N-1 ): min4 (XN—I , P (y N-1>% N1 )) =

XN-1

=A v (X ;_l , P (y N1 X1 )) =4, (GN—I (y N-1 )9 P (y v-1> O (y N-1 )))



Programowanie dynamiczne

Krok N. x; —>min{A1(X0,y1)+V1()/1)}
Wiemy ze: Vi M

Xy = Go(yo)—>H}CZH{AI(XO,P()/O,XO))+VI(P(yO,xO))}

Yo jest.znapq wartoscig i teraz mozemy wyliczyC kolejne wartosci
decijl x() axl 9o 9xN_19

= Go()’o)_))ﬁ =P(y0,x;)
:.G1(J’1)_)J’2 :P(J/px;)

Gy ( )_)yNIZP(yN—Zﬂx;kV—2)
Gy ( )_)yN P(yN—Dx;/—l)

xN2



Dekompozycja i koordynacja zadania

optymalizacji

X' = F(X)=min F(X) F(x)= H(F, (X', w), F, (X", W), ..., F (X<, w))

xe %%, 7 =xe #% p(x)=0,,w(x)<0,, }

] _gol(XI,W)_ i L/_ _l//I(XI,W)_ i M/_
X! I (X” , W) L W” (X” , W) "
T =Ix=| 1 |e#5%,p(x)= : =| i |=0,w(x)= : SEEE L
X" o (x.w)| |0, v K w)| | O,
W o"w) | [0, | v W) | [Ow, |

ZK:Lk+LW:L,ZK:Mk+MW:M
k=1 k=1



Dekompozycja i koordynacja zadania

optymalizacji

Zadanie rozwigzujemy w dwoch etapach.
Etap I: Dla ustalonej zmiennej koordynacyjnej w rozwigzujemy K zadan

X (W) > F (X (W, w)= min F(x,w)k=12,....K

xke@xk(w)
Nastepnie wyznaczamy wartosc:

F(w)= HE ¢ (Wb (" () ) o () )

Etap Il: wyznaczamy optymalng wartos¢ zmiennej koordynacyjnej rozwigzujgc
zadanie:

W — F(W)=min F(W)
we'?)
ostatecznie

X =x(W)k=12,.,K



Dekompozycja i koordynacja zadania

optymalizacji

min F(X) = mmH(F(X w), F, (x",w),...,F

xeY,

i t
X/ €D, (W) X” € @xﬂ (W , XK € Dy
X" (w) ',:"IX”*(W)
F(x' w I E(w') — i

Xg%lr%W) LW xgl,l,l( o 1O Xgl)m( 0 K O w || (W) =min F(w)

X"(w) w X" (W)‘ w l ,
' W

X" (w) x""(w)




Optymalizacja systemow

prof. dr hab. inz. Jerzy Swiatek



Egzamin

s> Optymalizacja systemow

29

29

29

Termin O - ostatni wyktad:
4.02.2024 (sroda) sala 23, budynek C-3, godz. 13:15 -15:00
Warunki terminu 0:

Pozytywne aktualne (tegoroczne) zaliczenie z ¢wiczen > 3.5
Propozycja oceny: ocena z ¢wiczen

@)

@)

o Obecnos¢ na ostatnim wyktadzie

o Nieobecni (bez wzgledu na przyczyne) rezygnuja ze zwolnienia
@)

Mozna wczeéniej ale nie po terminie 0. Nalezy przedstawi¢ potwierdzong ocene.

Termin 1:
11.02.2025 (Sroda) sala 23, budynek C-3, godz. 13:15 -15:00

Termin 2:
18.02.2025 (sroda) sala 23, budynek C-3, godz. 13:15 -15:00
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