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Wyniki:
 wnioski i hipotezy
metody projektowania
metody zarządzania
 algorytmy sterowania
metody diagnostyczne

odniesienie wyników
do obiektu

Efekt:
 nowa wiedza
 nowe obiekty
 procedury zarządzania
 urządzenia sterujące
 aparatura pomiarowo- 
 -kontrolna

zjawisko, 
proces, obiekt

eksperyment wyniki

badacz

model porównanie

doskonalenie 
(poprawa) modelu

Cel:
 poznanie
 projektowanie
 zarządzanie
 sterowanie
 diagnostyka
 itp.



Decyzja: różne typy elektrowni

)1(x
Elektrownia wodna Elektrownia atomowa Elektrownia wiatrowa

Obrazy:
http://ziemianarozdrozu.pl/encyklopedia/67/hydroenergety
http://kresy24.pl/showNews/news_id/5871/
http://windy-future.info/2009/10/13/large-wind-turbine/

)2(x )3(x

Cel: minimalizacja kosztów wytworzenia:
Ograniczenia:

321 ,, ccc – koszt jednostkowy 
wytworzenia energii

)3(
3

)2(
2

)1(
1

)3()2()1( ),,( xcxcxcxxxF ++=
– spełnienie zapotrzebowania na energię: β≥++ )3()2()1( xxx
– możliwości poszczególnych elektrowni: 3,2,1,0 )( =≤≤ nx n

n α

)3()2()1( ,, xxx - obciążenie elektrowni –     
zmienne decyzyjne
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http://ziemianarozdrozu.pl/encyklopedia/67/hydroenergetyka
http://kresy24.pl/showNews/news_id/5871/
http://windy-future.info/2009/10/13/large-wind-turbine/


Zmienne decyzyjne:
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Funkcja celu: )(xFy =

Zbiór rozwiązań dopuszczalnych (zwykle określony przez wskazanie ograniczeń):

xx D∈
Decyzja optymalna: ),(min)( xFxFx

xx D∈

∗∗ =→

( ) ( ) xxxFxFx D∈∧=+≤→ γα*~~

( ))(max)(min xFxF −−=

Decyzja zadowalająca:
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Zadanie decyzyjne bez ograniczeń: S
x RD =

Zadanie decyzyjne z ograniczeniami
równościowymi:

{ }SLxxxx L
S

x ≤===∈= ,0)(,,0)(,0)(: 21 ϕϕϕ RD

)1(x

)2(x

Zadanie decyzyjne z ograniczeniami 
nierównościowymi:

{ }0)(,,0)(,0)(: 21 ≤≤≤∈= xxxx M
S

x ψψψ RD
)1(x

)2(x 0)(1 ≤xψ

0)(2 ≤xψ

0)(3 ≤xψ
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0)( =xϕ

)1(x

)2(x



 Zadanie optymalizacji bez ograniczeń

 Zadanie optymalizacji z ograniczeniami równościowymi 
– metoda współczynników Lagrange’a

 Zadanie optymalizacji z ograniczeniami 
nierównościowymi – metoda Kuhna-Tuckera
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Założenie:            jest funkcją ciągłą i różniczkowalną.

Zadanie optymalizacji: )(min)(
S

xFxFx
x RDx =∈

∗∗ =→

)(xF

Warunkiem koniecznym aby       było minimum lokalnym jest:∗x

Sxx xF 0)(
*
=∇

Jeżeli jest funkcją pseudo - wypukłą, powyższe równanie jest warunkiem 
koniecznym i wystarczającym aby        było minimum globalnym

)(xF
∗x
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Jeżeli             jest dodatnio pół określona                  to rozwiązanie 
powyższego równania jest minimum globalnym

( )xH Sx R∈∀

Jeżeli             jest dodatnio określona                  powyższe równanie ma jedno 
rozwiązanie      i jest ono minimum globalnym

( )xH Sx R∈∀
∗x



Warunki optymalności drugiego rzędu:

Jeżeli jest dodatnio pół określona w punkcie        
to      jest minimum lokalnym

)( ∗xH

)( ∗xH

∗x

∗x

∗x
∗x

∗x
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( )xF

x

Sxx xF 0)(
*
=∇Równanie                                 może mieć wiele rozwiązań

Jeżeli jest ujemnie pół określona w punkcie        
to      jest maksimum lokalnym



Zadanie optymalizacji: )(min)( xFxFx
xx D∈

∗∗
∗
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{ }SLxxxx L
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x ≤===∈= ,0)(,,0)(,0)(: 21 ϕϕϕ RD

0)(1 =xϕ
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xD∗x
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 Metoda współczynników Lagrange’ a
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Warunki konieczne optymalności:

Sxx xL 0),(
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Funkcja Lagrange’a:
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- wektor
  współczynników
  Lgrange’ a

[ ],)()()( xFxGrankxGrank x∇−=⇔ 

gdzie:

[ ])()()()( 21 xxxxG Lxxx ϕϕϕ ∇∇∇= 



Warunki optymalności drugiego rzędu:

Jeżeli jest dodatnio określona w punkcie        
to      jest minimum lokalnym

)( ∗xH L

)( ∗xH L

∗x

∗x∗x

∗x
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Powyższy układ równań może mieć wiele rozwiązań

Jeżeli jest ujemnie określona w punkcie        
to      jest maksimum lokalnym

( ) ( )λ,xLxH xxL ∇=Oznaczmy:

Jeżeli funkcja           jest wypukła, a ograniczenia są liniowe czyli mają 
postać                                                                     to powyższy układ równań 
ma jedno rozwiązanie i jest ono rozwiązaniem optymalnym 

( )xF
Llxpx l

T
ll ,,2,1,0)( ==−= αϕ



 Metoda Lagrange’ a - Przykład 1

( ) ( )2)2(2)1()( xxxF +=

04)( )2()1( =−+= xxxϕ
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( ) ( )( ) ( )( ) ( ) ( )( )4, 212221 −+++= xxxxxL λλ



 Metoda współczynników Lagrange’a – Przykład 2 
rozwiązanie nieregularne

( ) ( )2)2(2)1()( xxxF +=

( ) ( ) 01)( 3)1(2)2( =−−= xxxϕ
)1(x

)2(x









=∗

0
1

x

)(xϕ
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( ) ( )( ) ( )( ) ( )( ) ( )( )( )31222221 1, −−++= xxxxxL λλ



Sxx xL 0),(
,
=∇ ∗∗ λ

λ

Jeżeli F(x) jest funkcją ciągłą, różniczkowalną i wypukłą oraz ograniczenia 
                                            są liniowe  to układ równań:

ma jedno rozwiązania i jest ono rozwiązaniem zadania optymalizacji z 
ograniczeniami  równościowymi.

Powyższy układ równań w tym przypadku jest warunkiem koniecznym i 
wystarczającym         

Lx
xL 0),(

,
=∇ ∗∗ λλ λ
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 Uogólniona metoda współczynników Lagrange’ a
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- z tego warunku otrzymamy
   rozwiązania regularne

Podobnie jak poprzednio otrzymane rozwiązania wymagają zbadania
 warunków drugiego rzędu czyli zbadania określoności macierzy:

).,,(),,( 0
2

0 λλλλ xLxH xxL ∇=

10 =λ S

L

l
lxlx xxF 0)()(

1
=∇+∇ ∑

=

ϕλ

15

- z tego warunku otrzymamy rozwiązania
   nieregularne



Zadanie optymalizacji:

)(min)( xFxFx
xx D∈

∗∗ =→

{ }0)(,,0)(,0)(: 21 ≤≤≤∈= xxxx M
S

x ψψψ RD

)1(x

)2(x 0)(1 ≤xψ

0)(2 ≤xψ

0)(3 ≤xψ
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0)(1 ≤xψ
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Warunki konieczne optymalności:

Funkcja Lagrange’ a:
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Przykład 2 – rozwiązanie nieregularne
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1. Karlina: ograniczenia                                             - liniowe( ) ( ) ( )xxx Mψψψ ,,, 21 

2. Slatera: ograniczenia                                             - wypukłe oraz zbiór rozwiązań
                   dopuszczalnych ma niepuste wnętrze

( ) ( ) ( )xxx Mψψψ ,,, 21 

3.Fiacco – Mac Cormica: w punkcie optymalnym gradienty wszystkich ograniczeń
                    aktywnych są liniowo niezależne, czyli:
                                                                                         są liniowo niezależne( ) ( ) ∗=

∗∗ ∇∈∀ xxmx xxIm ψ
4. Zangwila: )()( ∗∗ = xDxD

5. Kuhna – Tucker’a: dla każdego kierunku                     istnieje krzywa regularna
                     rozpoczynająca się w punkcie        i styczna do tego kierunku
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nieregularne



Warunki konieczna i wystarczające: 
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Jeżeli funkcje                                                      są ciągłe i różniczkowalne oraz 
funkcja           jest funkcją pseudo – wypukłą, a ograniczenia 
są funkcjami quasi – wypukłymi to wkład równań i nierówności:

( ) ( ) ( ) ( )xxxxF Mψψψ ,,,, 21 

ma jedno rozwiązanie i jest ono rozwiązaniem zadania optymalizacji z 
ograniczeniami nierównościowymi
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( )µ,xL
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( )∗∗ µ,xPunkt siodłowy 
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( )∗∗ µ,x ( ) ⇔≥∈ Mxx 0),( µDPunkt              jest punktem siodłowym  

( )
( )
( ) Mmx

Mmx
xLx
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,,2,10.2

,imalizujemin.1
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ψ
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Jeżeli              jest punktem siodłowym funkcji  Lagrange’a  L(x,µ) to jest 
rozwiązaniem zadania optymalizacji:   

( )∗∗ µ,x

)(min)( xFxFx
xx D∈

∗∗ =→

{ }0)(,,0)(,0)(: 21 ≤≤≤∈= xxxx M
S

x ψψψ RD
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Konstruujemy ciąg przybliżeń na podstawie wartości funkcji           w danym 
punkcie

)(xF
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∗≈ xxN
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> > > >
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0x 1x
2x 3x
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),(min)( xFxFx
xx D∈

∗∗
∗

=→





• Kierunki bazowe i ich 
modyfikacje – metody 
bez gradientowe.

• Kierunki oparte na 
gradiencie funkcji – 
metody gradientowe.

• Inne





Uwaga!



Metody optymalizacji w kierunku
o Podział równomierny
o Podział na połowę
o Złoty podział
o Aproksymacji kwadratowej
o Metoda pierwszej pochodnej
o Metoda znaku pochodnej
o Metoda Newtona
o Metoda Bolzano

32



























Bezgradientowe metody optymalizacji
oHooka-Jeevesa (z krokiem dyskretnym 

i optymalnym)
oRosenbrocka (z krokiem dyskretnym 

i optymalnym)
oPowella
oNeldera Meada

45























Gradientowe metody optymalizacji
oGradientu prostego
oNajszybszego spadku
oNewtona
oGradientu sprzężonego
oZmiennej metryki

56















Metody optymalizacji z ograniczeniami
o Transformacji zmiennych
o Funkcji kary

• Kary zewnętrznej (kary)
• Kary wewnętrzne (bariery)

o Metoda compleks
o Poszukiwania losowe

63
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1. Rozwiązanie leży w 

wierzchołku



2. Rozwiązanie leży na odcinku



3. Rozwiązanie nieograniczone





1. Wyznaczenie rozwiązania początkowego

2. Kryterium zbieżności – zatrzymanie procedury

3. Przechodzenie z jednej bazy do drugiej

4. Postępowanie przy rozwiązaniach zdegenerowanych





Zmienn
e 
bazowe



 Programowanie całkowitoliczbowe

Zmienne decyzyjne: { }Ssxx s
xx ,,2,1,)( =∈∩=∈ CDD

)1(x

)2(x

zero – jedynkowe (Boolowskie)

84

{ }Mx xxxx ,,, 21 =∈D - typoszereg

Inne równoważne

( ) { }{ }Ssxx s
x ,,2,1,1,0 =∈=∈D - programowanie







Niepewność opisana zmienną 
losową

Gra z naturą
Podejście growe

87
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Rodzaj
uprawy

Warunki pogodowe a
min

A
max

H(γ)
γ = 0.5susze normalne deszcze

1 8 10 12 8 12 10
2 10 11 7 7 11 9
3 9 13 8 8 13 10.5
4 11 10 6 6 11 8.5
5 10 10 9 9 10 9.5

← max

ia iA- minimalna korzyść dla i – tego
   wiersza 

- maksymalna korzyść dla i – tego
   wiersza 

ia iA

( ) ( ) [ ]1,01 ∈−+= γγγγ iii AaH

γ



0 1 γ

( ) ( ) [ ]1,01 ∈−+= γγγγ iii AaH( )γiH

1
0

5

1
5

( ) ( )γγγ −+= 11281H

( ) ( )γγγ −+= 11172H

( ) ( )γγγ −+= 11164H

( ) ( )γγγ −+= 11383H
( ) ( )γγγ −+= 11095H

( ) ( ){ }γγ ii
HH

51
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γ=0,75

1=γia0=γiA



Gra  dwuosobowa o sumie zerowej
Macierz wypłat  dla gracza A:                   Macierz wypłat  dla gracza B:

B
    A … …

… …
… …

… … … … … … …
… …

… … … … … … …
… …

B
    A … …

… …
… …

… … … … … … …
… …

… … … … … … …
… …

Gracz A maksymalizuje zyski                           Gracz B minimalizuje straty  

Zwyczajowo podaje się macierz wypłat dla gracza A   



 Typowe podejście do rozwiązywania gier
o Wyznaczenie punktu siodłowego
o Usunięcie strategii zdominowanych 
o Wyznaczenie strategii mieszanej dla:

• N=2 i M=2
• N>2 i M>2



Gra  dwuosobowa o sumie zerowej

Punkt siodłowy:                                 =

B
    A min

… …
… …
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… … … … … … …
… …

… … … … … … …
… …

max

← 

↑

nmMmNn
a

≤≤≤≤ 11
minmax

nmMmNn
a

≤≤≤≤ 11
maxmin

nmMmNn
a

≤≤≤≤ 11
minmax nmMmNn

a
≤≤≤≤ 11

maxmin



Strategia zdominowana i dominująca

Gracz A dysponuje strategiami: 

Strategia        jest zdominowana przez strategię        
(dominującą)
jeżeli                                                           

Gracz B dysponuje strategiami: 

Strategia        jest zdominowana przez strategię        
(dominującą)
jeżeli                                                           

nA ′ nA ′′

mnmn aaMm ′′′ ≤=∀ ,2,1

NAAA ,,, 21 

MBBB ,,, 21 

mB ′ mB ′′

mnmn aaNn ′′′ ≥=∀ ,2,1
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Gra  dwuosobowa o sumie zerowej

Strategie mieszane  N>2, M>2:

B
    A … …

… …
… …

… … … … … … … …
… …

… … … … … … … …
… …

W tym przypadku rozwiązanie gry sprowadza się do 
rozwiązania zadania programowania liniowego
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Zadanie dla gracza A

Nn
V
p

VV
p

V
p

V
p

MmBa
V
pa

V
pa

V
p

A

n

AA

N

AA

mNm
A

N
m

A
m

A

,,2,10

1

,,2,1/1

21

2
2

1
1







=≥

=+++

=≥+++

Niech: Nn
V
px

A

n
n ,,2,1 ==



Zadanie dla gracza A
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Gracz A maksymalizuje  zysk

Zatem należy minimalizować wyrażenie
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Przy ograniczeniach:

Ostatecznie zadanie dla gracza A
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Zadanie dla gracza B
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Gracz B minimalizuje  straty

Zatem należy maksymalizować wyrażenie
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Przy ograniczeniach:

Ostatecznie zadanie dla gracza B
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 Sformułowanie problemu

 

  

 
 

  

Opis systemu pomiarowego: ( )zhv ,θ=

gdzie: h – znana funkcja, wzajemnie jednoznaczna względem z 

V,Z →×Θ:h

V,∈v

( )vhz z ,1 θ−=

Przykłady funkcji h: ( ) zzhv +== θθ ,

( ) zzhv ⋅== θθ ,

V – przestrzeń pomiarów(                                   )Lz == dimdimθ
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 Sformułowanie problemu

Zakłócenia pomiarowe:

nz – wartość zmiennej losowej        z przestrzeni   

( )zf z

θ RR⊆Θ∈θθ ,

( )θθf

Wyniki pomiarów: [ ]NN vvvV 21=

z Z

– funkcja gęstości rozkładu prawdopodobieństwa zmiennej 

– obserwowany wektor wielkości, wartość zmiennej losowej 

– funkcja gęstości rozkładu prawdopodobieństwa zmiennej 

 

  

 
 

  

z

θ
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Poszukujemy algorytmu estymacji:

Możliwe rozwiązania:
o Metoda najmniejszych kwadratów
o Metoda maksymalnej wiarogodności
o Metody Bayes’a

( )NNN VΨ=θ



Założenia:

( ) zzhv +== θθ , – zakłócenia addytywne

[ ] 0=zE
z

– wartość oczekiwana zakłóceń wynosi zero

[ ] ∞<zVar
z

– skończona wariancja zakłóceń

Algorytm estymacji otrzymujemy minimalizując empiryczną wariancje zakłóceń:

( ) ( )∑
=

−=
N

n
nNzN v

N
VVar

1

21, θθ

( ) ( ) ( )θθθ
θ

,min, NzNNNzNNNN VVarVVarV
Θ∈

=→Ψ=

Empiryczna wariancja zakłóceń:

Algorytm estymacji:

∑
=

=
N

n
nN v

N 1

1θ
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Postacie funkcji gęstości rozkładów prawdopodobieństwa            oraz              są znane .

Założenia:

( )zhv ,θ= – system pomiarowy opisany jest dowolną funkcją, wzajemnie jednoznaczną 
    względem z

( )zf z

( ) ( )( )[ ] ( )( ) ( )∫ ∫
Θ

Ψ=Ψ==Ψ
N

N
NNNNV

df
dVdVfVLVLER

V

θθθθθ
θ

,,,
,

( )θθf

Dana jest funkcja strat                , gdzie       jest wartością estymaty obserwowanej wielkości.( )θθ ,L

Ryzyko:

gdzie: łączny rozkład prawdopodobieństwa( )NVf ,θ

( ) ( ) ( )NNN VfVfVf ′′′= θθ ,

θ

gdzie jest warunkową, a       brzegową  funkcją gęstości rozkładu prawdopodobieństwaf ′ f ′′

– obserwowany wektor wielkości, wartość zmiennej losowej RR⊆Θ∈θθ ,θ

 

  

 
 




















image4.wmf

n


v




oleObject4.bin



oleObject5.bin



oleObject6.bin



oleObject7.bin



oleObject8.bin



image1.wmf

q




oleObject1.bin



image2.wmf

(


)


z


h


,


q




oleObject2.bin



image3.wmf

n


z




oleObject3.bin





gdzie:

( ) ( )( ) ( ) ( )∫ ∫
Θ

′′′Ψ=Ψ
N

NNNN dVVfdVfVLR
V

θθθ ,

( ) ( )[ ] ( )( ) ( )∫
Θ

′Ψ=== θθθθθθθ
θ

dVfVLVLEVr NNNN ,,,
df

Problem: ( ) ( )Ψ=Ψ→Ψ
Ψ

RR NN min

r – ryzyko warunkowe

( ) ( ) ( )NNNNNN VrVrV ,min, θθθ
θ Θ∈

=→Ψ=

Problem sprowadza się do następującego zadania :



Metoda maksymalnej wiarogodności

Założenia:

( )zhv ,θ= – system pomiarowy opisany jest dowolną 
funkcją h, wzajemnie jednoznaczną 
względem z

( )zf zPostać funkcji gęstości rozkładu prawdopodobieństwa zakłóceń            jest znana      

Funkcja gęstości rozkładu prawdopodobieństwa obserwowanej zmiennej losowej     

( ) ( )( ) ,,, 1
hzzv Jvhfvf ⋅= − θθ

v

gdzie: - Jacobian, macierz przekształcenia odwrotnego.hJ

( )
v

vhJ z
h ∂

∂
=

− ,1 θ

Funkcja wiarogodności ma postać:

( ) ( ) ( )( ) ,,,,
1

1

1
∏∏
=

−

=

==
N

n
hnzz

N

n
nvNN JvhfvfVL θθθ

 

  

 
 

gdzie:
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2x ∗
3x

1F  
2F

3F

)(,),(),( 21 xFxFxF M

x – wektor zmiennych decyzyjnych

– kilka różnych funkcji celu – ocena wielokryterialna
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Syntetyczny wskaźnik jakości

 

∗x  

1F  

2F  

3F  

)()()( 332211 xFxFxFF ααα ++=  

∑
=

=
K

k
kk xFxF

1
)()( α

( ))(,),(),()( 21 xFxFxFHxF K=

np.:
gdzie:

Kkk

K

k
k ,,2,1,0,1

1
=>=∑

=

αα

)(min)( xFxFx
xx D∈

∗∗ =→

∏
=

=
K

k
k xFxF

1

)()(

H(.) – funkcja monotoniczna ze 
względu na każdą składową
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Optymalizujemy wybrany wskaźnik, 
Pozostałe wskaźniki spełnione są w sposób zadowalający.

 

 

 

 

 

)(1 xFNiech               - wybrany wskaźnik

KkxF kk ,,3,2,)( =≤ β

{ }KkxFx kk
S

xx ,,2,)(: =≤∈∩= βRDD

)(min)( 11 xFxFx
xx D∈

∗∗ =→

Wskaźniki spełnione w sposób zadowalający
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Uszeregowane wskaźniki jakości – priorytety wśród wskaźników

xK xxFxFxF D∈)()()( 21 

xx DD =1Krok 1.

)(min)( 1111
1

xFxFx
xx D∈

∗∗ =→

Krok 2. ( ) ( ){ }111112 : γ+≤∈∩= ∗xFxFx S
xx RDD

)(min)( 2222
2

xFxFx
xx D∈

∗∗ =→





Krok K. ( ) ( ){ }11111 : −
∗
−−− +≤∈∩= KKK

S
xKxK xFxFx γRDD

)(min)( xFxFxx KxKKK
xKD∈

∗∗∗ =→=

∗
1x

( )∗11 xF

( )xF1

( ) 111 γ+∗xF

( )xF2

∗
2x

( )∗22 xF

( ) 222 γ+∗xF
( )xF3

∗∗ = 3xx

xx DD =1 ( ) ( ){ }111112 : γ+≤∈∩= ∗xFxFxxx RDD

( ) ( ){ }111112 : γ+≤∈∩= ∗xFxFxxx RDD



{ } { }
( ) ( ) ( ) ( )2121

21 ,,2,1,,2,1,
xFxFxFxF

KiKjDxx
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<⇒>
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( )1xFj
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( )2xFi
( )2xFj

( )1xFi



Proces dynamiczny:


0y 1y 2y Ny 1+Ny

0x 1x Nx

),(1 nnn xyPy =+

http://www.all-freeware.com/

n – takt

nx – decyzja w n – tym takcie

ny – stan procesu w n – tym takcie

Zadanie decyzyjne: znaleźć ciąg: ,,,, 10
∗∗∗
Nxxx 

dla których wskaźnik                                przyjmuje wartość minimalną( )NxxxQ ,,, 10 
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∗∗∗∗∗∗ =→

Powyższe zadanie można rozwiązać krok po kroku optymalizując po 
jednej zmiennej i uzależniając od pozostałych.

Przyjmijmy oznaczenia:

xSxmSmlSlS MmLlFF DD ≡===≡≡ ,,2,1,,,,2,1,,  ψψϕϕ
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Krok 1.

Wartość funkcji celu w punkcie optymalnym:
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Ograniczenia w punkcie optymalnym:
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Ograniczenia w punkcie optymalnym:
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Krok S.

Teraz możemy powrócić do zależności „G” wyznaczonych w poprzednich krokach 
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Zadanie rozwiązujemy w dwóch etapach.
Etap I: Dla ustalonej zmiennej koordynacyjnej w rozwiązujemy K zadań

Następnie wyznaczamy wartość:

Etap II: wyznaczamy optymalną wartość zmiennej koordynacyjnej rozwiązując 
zadanie:
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prof. dr hab. inż. Jerzy Świątek



 Optymalizacja systemów
 Termin 0 – ostatni wykład: 
 4.02.2024 (środa) sala 23, budynek C-3, godz. 13:15 -15:00
 Warunki terminu 0:

o Pozytywne aktualne (tegoroczne) zaliczenie z ćwiczeń ≥ 3.5
o Propozycja oceny: ocena z ćwiczeń
o Obecność na ostatnim wykładzie 
o Nieobecni (bez względu na przyczynę) rezygnują ze zwolnienia
o Można wcześniej ale nie po terminie 0. Należy przedstawić  potwierdzoną ocenę. 

 Termin 1: 
 11.02.2025 (środa) sala 23, budynek C-3, godz. 13:15 -15:00

 Termin 2: 
 18.02.2025 (środa) sala 23, budynek C-3, godz. 13:15 -15:00
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